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I. INTRODUCTION

Flutter is an aeroelastic dynamic instability where both bending and
torsional components of a wing result in complex uncontrolled motion. Pas-
s‘ve flutter suppression can be accomplished by increasing structural rigidity
which requires additional weight. Recent édvances in wing mo@eling and
control theory have made active flutter suppression more attractive. Active
flutter suppression to reduce the aeroelastic response of aircraft structures
results in substantial weight savings, increased aircraft maneuverability,
rider comfort and gust alleviation.

The state-space equations describing the flutter control problem represent
the flexible structure, unsteadv aerodvnamics and actuator dynamics, and are
usually of high order (~60 states). Modern contrel svnthesis techniques
applied to active rflutter suppression, such as the standard linear quadratic
Gaussian (LQG) solution, are of the same nizh order as the plant. Implementation
requirements demand that the full-order control law be reduced or some how
approximated. Active flutter control designs using the LOG approach and
some form of control law model order reduction have been reported in Refs:

1 to 3. The contrel laws in ReZs. 1 to 3 are all analog.

In this report, an alternative approach to modern control law synthesis
is applied to the flutter suppression problem. The objective is to demonstrate
the application of a digital active flutter control design methodologv using
optimal constrained dvnamic compensaters. The flutter control design is

V 1
svnthesized by minimizing a quadratic performance index defined by a weishted
sum of mean-square steady state responses and control input as in the LOC
arproach.  The dit7erence is that the feoedback control law is constrained to

use only those measurements, v, , wihich are practically available,
n



u, = Ky (1)
Y T Cxp oty (2)

where qk, ik and Zk are the control, state and measurement noise vectors,
regpectively. The wind gusts which continually excite the wing, the measure-
nent noise, lk’ from the sensors and the state initial condition errors are
specified as part of the desizn model. Also included are the "to be designed"

compensator dynamics,

Zyq T Bylz By Tul (3)

Yo x = Iz (4)

The compensator dynamics are a<icined to the plant model as a completely
controllable and observable stable svstexz. The compensator controls are
included in up and the perfect measurements of the compensator states (except
for finite arithmetic) are included in

]

=

There are a number of advantazes to using the LQG output feedback
approach combined with dvnamic comrensation. The order of the compensator

can be specified by the designer sui

§

wJ
Cde

47

¢t to stabilizability constraints.
For the tflutter problem, dvnatic compensation appears to be necessary to
ensure stability at high dyvnamic pressure. The output feedback approach
allows the designer to choose the simplest and easiest to implement control
structure which achieves stabilitv mafgins and low rms response. At the
same time, dvnamic stistems which arfect the control design, such as actuator
dvnamics and analog prefilters,can be included in the plant model without
increasing control structure compiexity.

Ihe quadratic cost function usced o represent design objectives is



specified in continuous-time along with the flutter model dynamics. The cost
function and plant model are transformed to a discrete optimization problem
using the sampled-data regulator apprbach. The resulting optimal output feed-
back digital control law is a direct digital design. The sample rate can be
readily changed and new control gains obtained without having to adjust the
continuous~time cost function weighting matrices to obtain comparable time-
domain performance.

The computation delay that occurs in implementing the digital control
system can be accommodated in the design by weighting control rate in the
continuous-time cost function. Control rate weighting causes the optimal
digital control law to use one-step delaved state information. The time
frame that transpires after receiving the sampled filtered sensor measure-
ment can be used to compute the control signal that is to be sent to the
actuator channel at the beginning of the next time frame.

The optimal contrained dvnanic compensator problem has been studied by
researchers in Refs. 4 to 7. The necessary conditions for the control lav
to minimize the cost function are presented in Ref. 4 for the continuous
case and Ref. 6 for the discrete case. Despite the manyv practical advantages
of the approvach, there are onlv a “ew serious studies of the application of
crtimal constrained dvnamic compensators for continuous plants and none, that
tne authors are aware of, for discrete svstems. There are at least three
reasons which make the application of optimal output feedback design difficult.
These difficulties are surmounted for the digital flutter suppression control
law design presented in this report.

The most important reason is the lack of a tfast, stable, reliable algor-
izhm ror iteratively solving the cutput feedback necessarv conditions for

relatively large order plants. Recently, in Ref. 3, the authors presented



a new algorithm for solving the necessary conditions, by computing a
sequence of gains in Eq. 1 which converges to an optimal gain. This
algorithm has been applied without difficulty to the digital flutter con-
trol law synthesis problem.
Three stgdies which determine analog output feedback control laws
using dynamic compensators and cost functions somewhat similar to the
one in this report are Refs. 9, 10, 11. Gradient search algorithms are
used to minimize the cost function.
A comparison of the algori&hm used in this report and a typical
gradient search algorithm is ziven in>Ref. 8. A comparison of the
symplified version of the algorithm in this report (i.e. the case when
» is forced to be 1.0 in Eq. 59) and tvpical gradient search algorithms
is given in Ref. 12. Both rearences demonstrate the benefits offered
bv the algorithm in this report. Gradient search algorithms have the added
difficulty that the search direction can lead to unstable closed-loop plants,
a problem not encountered by the algorithm used in this report (for a suffic-
iently small o).
A second reason for oprizal output reedback design difficulties,
as reported in most of the relerences on optimal dynamic compensators,
is that simply adjoining compensator dyvnamics to the plant and not

weishting compensator controls >r states in the cost function is un-

wn

satisfactory since the optimization process causes the unconstrained com-
pensator gains to approvach larze values for continuous svstems. To avoid

this problem, Refs. 4 and 5, for example, include the compensator gains in

the cost function using a modiied version of cbmpensator control weighting.

A new approvach is pursued for the lutter suppression control law design. The
compensator states and controls are quadratically weighted in the cost tunction

and an error term,



T
(z - Hx) Q(z - Hx

) (5)

is added to the cost function. The error term is an attempt to force the
compensator states to estimate or observe chosen states of the plant. The
zlobally optimal dynamic compensator for the case where the order of the
compensator is n-/ (number of plant states - number of plant observations)
is a reduced-order observer, (Ref. 7).

A third reason why optimal constrained dynamic compensator may be
receiving little attention concerns the lack of any theoretical guarantee
of good control system properties. Theoretical guarantees of phase and
gain margins for the Linear Quadratic Regulator (LQR) full-state feedback
control law are discussed in Ref. 13. The stability margins of the full-
state feedback LQG approach can recover the stability margins of the LQR
approach by using an input noise adjustment procedure described in Ref. 14.
A flutter suppression control law designed using the LQG input noise adjust-
ment method is presented in Rer. 1. Although a proof exists only for a
tull-crder LQG control law, Section IVC numericaliv shows that improved
stability margins can also be obtained for the discrete optimal constrained
dvnamic compensator apprecach. The improved stability margins are obtained
by increasing the initial condition input covariance. Reference 10, which
determined optimal constrained dvnamic compensators by using a state reduced
full-order Kalman filter as an initial guess and optimizing the gains in the
reduced-order svstem, reached a similiar conclusion.
A.  OVERVIEW OF THE REPORT

The state-space model for flutter control svonthesis is discussed in
Chapter 11, The large order full-state evaluation model and the lower
order design models obtained by residualization and balancing are presented.

A baseline Ulutter wmodel at a = 3.0 kPas, Mach = 0.9, is used throughout



the report. The control optimization problem is constructed in Chapter III.
The sampled-data regulator approach is uvsed. A continuous cost function and
plant model are transformed to an equivalent discrete-time cost function

and wodel. A single-~rate, zero-order hold, digital control law design that
accommodetes computation delays is the desired objective. The steps in the
algorithm used to solve the necessary conditions to minimize the cost function
are preserted in Chapter III.

Chapter IV presents the baseline control design parameters and closed-
loop control law performance. The digital controller has a number of para-
meters which must be varied to trade off stability properties versus rms
performance. The effects of varying the sampling rate, the prefilter time
constant and control structure are investigated in Chapter V. As the
control law must stabilize the wing for a wide range of flight conditions;
Chapter VI contains stability properties and rms performance for a constant
gain design and a gain scheduled design from q = 5.0 to 9.0 kPas. Chapter
VII presents some recommendations and conclusions. Appendix A investigates

relationships between compensators in this report and observers.



I1. STATE-SPACE MODEL FOR FLUTTER CONTROL SYNTHESIS

The control law synthesis method presented in this report is used to
synthesize an active flutter suppression control law for an aeroelastic wind-
tunnel wing model. The geometry of the sweptback, canilevered wing model,
a_ong with sensor (accelerometer) and control surface locations, is shown in
Fig. 1. The half-wing is scaled to flutter within the operational limits of
the NASA Langley Transonic Wind-Tunnel. The wing has an electro-hydraulic
servo—actuated trailing edge control surface. The surface hinge line is
located at 80% of the local streamwise chord. The reaction torques of the
actuator are constrained by a link to the main structural beam in the control
pod section. The main structural beam is a singie tapered aluminum bar ,con-
struction with a cruciform cross section as shown in Fig. 1. The accelerometer
and control surface locations were provided by NASA as part of the wing model.

A.  AEROELASTIC MODEL OF THE WIXNG

The mathematical model of wing deformation used in this report is discussed
in detail in Ref. 15. Previous analvses cof the problem have employed general-
ized coordinates, based on zero airspeed vibration modes or other fixed wing
deformation shapes, from which zeneralized aerodynamic forces have been computed
(Refs. 16-18). The model in Retf. 15 employs physical coordinates of bending and
torsion of the wing structure directlv, and uses constant influence coefficient
matrices to describe the structural, inertial and aerodvnamic forces.

The model is constrained to 7 node points in 2 degrees-of-freedom (vertical
deflection and rotation in the flight direction). Two additional states are used
for ailercon deflection and an internal housing state linking the control surtface
te the main structural beam. The aercelastic efrects of the aileron are not ne-

vlected when the model is constructed, while the internal housing state has no

~J



aeroelastic effect.

forces and moments affecting the 15 degrees-of-freedom.

The equations of motion are generated in terms of the

The state space model for the flutter problem can be written in standard

form as
o I LN " 0
X 0 A 0 B X 0 0
d _ d d d + u + n
X 0 0 -A 0 % A 0
a a a a
X 0 0 0 A X 0 B
| =2 | L gdl—28. L] | 8]
y = |C E D 0 '.x i + v
W oW W - a
%4
X
a
X
L &

The state vector, z, is partitioned as follows

16 16 15

T T T T
X = 7z, z X

W W —w ~qa

and is a 47x1 state vector. The 16xl vector, Z,

deflections, hi’ 7 rotations, li’ an internal housing state

trol surface to the main structual bean, Sh’

15x1 wvector, ﬁqa’ is the unsteady life and moment vector.

vector, X, and 2x1 Dryden wind model vector, x_ are states

disturbance models which affect the unsteady aerodvnamics.

presents the accelerometer measurement. The parameter, an

<
accelerometer measurement disturhances modeled as zero-mean
covariance V .

the Drvden wind model and has unit covariance.

8

and actuator position, 53

(6)

(7)

(8)

contains the 7 wvertical

linking the con-

The

The 2x1 distrubance

for the external
Equation 7 re-
is

in Eq. 7

white neise with

The scalar, », is a zero-mean white noise driving term for



The second-order Dryden wind model used to represent the Von Karmen power

spectrum is

3 I l + JES%? s
£ ‘} = : (9)
n wg Vf _L )2
V s
ng - root-mean-square {rms) -gust velocity -0.3048 m/s
L - scale of turbulence or characteristic length -30.48 m
Vf - flight velocity, m/sec

The actuator dynamics are represented by a third-order tramsfer function

given by (Ref. 1):

X

a _ 214
u s + 214 (10)
8

a _ 89450
% - (1L1)

a s+ 179.45s + 89450

The first-order pole in Egq. 10 is modeled as the state X, in Eq. 6. The
second-order polynomial in Eq. 11 is embedded in the wing model state-space
representation. The parameter Aa in Eq. 6 has the value 214.0 as shown in

Eq. 10. The matrices A and B in Eq. 6 are determined from the state-space

fa)

representation of Eq. 9.

B. MODEL STATES CAUSED BY THE CONTROL STRUCTURE

The accelerometer signal used for feedback senses low and high frequency
wing motion as well as noise. Flutter is predicted at a dynamic pressure of
5.36 kPa and a frequency near 50 rad/sec (the lowest wing motion frequencv
in the wing model). Digital control laws can héve improved performance if a
properlyv chosen analog prefilter is used to suppress high frequencv distur-
bances in the sensor output before the sensoriuutput is sampled, (Retfs. 19
and 20).

9



A first-order prefilter with the transfer function
a
¢ T s+ a y (12)

is used in the digital control law design. If a full state feedback linear
cuadratic regulator control system is designed, then all plant states, in-
cluding prefilter states, would have to be measured for feedback, however,
the use of output feedback does not require the measurement of all the states
and does not neglect the prefilter dynamics. The baseline value for the pre-
filter pole, a, is chosen to be near the flutter frequency, (-50.0 rad/sec).
The prefilter also serves to suppress stable high frequency wing deformation
modes which are aliased near the flutter mode frequency after sampling.

The digital control law uses dvnamic compensation to improve closed-loop
stability and performance. The orler oI the dynamic compensator is arbitrarily
chosen. The compensator states zare introduced in the model as stable dynamics

with perfect control and noise Zree cbservation,
z = -BIz + IEC (13)

y. = 1z (14)

A digital control law recuires a finite amount of computation time to
output a control command after measurements are obtained. Neglecting the
computation delay can have adverse efiects, including instability, on closed-
loop performance. An effective method for accommodating the computation delayv
in the Linear Quadratic Regulator desizn approach is to weight control rate
in the quadratic cost function, Ref. 21. The optimization problem is solved

by including control rate dvnamics in the continucus-time wing model.

10



Weighting v in the cost function weights control rate. The discrete control
law that results from using Eq. 15 requires that the control actuator command

applied at time tk be computed during the time interval, tkvtk—l’ using the

accelerometer measurement obtained at the sampling instant, tk 1

C. MODEL-ORDER REDUCTION AND THE DESIGX MODEL

The complete wing modwl has 47 states to describe wing motion, 5 states
for disturbance and actuator dynamics and 2+0 states for the control law with
dynamic compensation (1 prefilter state, 1 control rate state, and O compensator
states) for a total of 5440 states. The complete wing mo@el is used to eval-
uate control performance. A block diagram of the wing model and discrete
control law is shown in Fig. 2.

The design model is a state-space representation of the wing that is
smaller in dimension than the evaluaticn wing model. The design model is used
in the active flutter control optimization problem to determine the feedback
gains in the control law. A lower dimensiocn design model reduces the cost of
control design without significantly compromising closed-loop performance, as
will be shown.

The design model is obtained bv residualizing the high frequency and very
stable modes in the 47 state wing model. The residualization procedure begins
bv computing the eigenvalues and eigenvectors of the 47 state wing model. The
eigenvalues are shown in Table 1 for the baseline (q = 8.0 kPa ) flight con-
dition. A real transformation matrix, T, is computed by arranging eigenvectors
columnwise. If an eigenvector is complex, the real part is placed as one

column and the imaginarv part is placed as the next column in T,

A X = )\._X_. (}.6)

i C— A My o 3 = 3 7{,
| [heal(xl) Iuaﬁkﬁl) e ] . " a, + ] bl (17 a,.b)



The transformed wing model is block diagonal and results in the model repre-

sentation of the wing dynamics. The eigenvalues are ordered as shown in

Table 1,

- -
a1 bl 0 0
by

. 0 0 a, b2 )
T AT= = A (18)
\™ . —b2 a2 W
a
- n_‘

Complex eigenvalues form 2x2 diagonal blocks in—gw, while real eigenvalues are
scalars on the diagonal.

The transformed model wing model, (A , B , B , Ew) is partitioned as

W u W
follows
——- I —-— —
Eapb ) At O 1 Bl Bl
. =1 - =Ty~ = -l- ==} +]- -"- + - =1 x (19)
X 0 1 A =< B a B -
22 - P22 | w2 u?2 w2
=1C C X + % + E
Y [Cwl CWZ] o1 Dw Ta W §d+ Ya (20)
zw2

The gw states in Eq. 19 are egual to T_IEV. The derivatives of the high

N

frequency and very stable states, ¥ are assumed to be zero and are eliminated

w2
from the model, yielding,
X0l - All Ewl + Bul *a + Bwl Ed (2D
SC x4+ (-8 371 ) s = (F-C izl '
y Cwl \wl (Dw CwQAZQ Bu23 a (Ew CwZAZZ sz) 5-d + \a (22)



The control design model partition is shown in Table 1 and uses all states up
to and including those which govern the actuator dynamics. The control law
produces unsatisfactory closed-loop performance if the actuator dynamics are
residualized or neglected. A second, higher order evaluation model shown in
Table 1, is used to compute Bode plots and Nyquist plots using the program
DIGIKON, Ref. 22. The version of DIGIKON employed has a maximum limit on the
number of states allowed in the plant mndel.

The residualized procedure used for the wing model is also used to

reduce the 4 state dynamical representation of the disturbances 3 and x
to one state in the design model, X . The models for x , X,, X and x are
g g’ —d’ "a 8

numerically balanced, using results from Ref. 23; to improve computational
accuracy for the design and evaluation models.

The balancing procedure was also investigated as an alternative method
for reducing the order of wing model. The control designs using the balanced
reduced-order models were acceptable, but were poor in comparison to the
control designs obtained using residualization. Closed-loop eigenvalue loc~
ations for the design and evaluation models were more dispersed for the

balanced reduced-order design models.

Grouping all the models tozether, the instantaneous measurements are

CP

o0 0 1'0o 07 [z ]

yF — e _| - E(_Y\'l
— ]
v l=l 000 o' o X, &)

u 0 0 0 O : 0 1 EO
X.

LU =




and the 14+0 order control design model is:

A
w
BN PZ B B o 'o 0, ]
~wl 11 ul W i Ewl
% 0 -A 0 o ' o a x
a a | a a %
% 0 0 A o ''o0o o X P
g = g ! g2
) piog et 1
xf fcyl_ ?D_ ) fE_ _—f | _O- —O_ xf
z 0 o 0 0 :-81 0flz
\
= | 0 0 0 o o oflLul
B E
0 0 [0 0
0 0 0 0
0 Ol u B 0 n
i+l 8 %E (24)
0 0 fLv ) a e
~~~~~~ S a
1 0 0 0
L.O 1‘- L.O O..




IIT. ACTIVE FLUTTER SUPPRESSION OPTIMIZATION PROBLEM

The control design optimization problem for synthesizing-an active
flutter suppression control system is presented in this chapter. The control
design uses an infinite-time quadratic cost function to represent design object-
ives. The quadratic weights in the continuous-time cost function are chosen
by the designer. The cost function and plant model are transformed to a discrete
optimization model by assuming the control inputs can only change at equally
spaced sample points in time. The compensator states and plant states are cross-—
weighted in the cost function in an attempt to make the compensator state
estimate, or "observe", specified wing model modes. The discrete control
structure is constrained to use feedback of only specified states. The
necessary conditions the constrained feedback gain must satisfy in order to
minimize the discrete cost function is detailed. An algorithm for determining
a gain which satisfies the necessarv conditions, resulting in a local minimum,

is presented.

A. CONTINUOUS-TIME OPTIMIZATION PROBLEM

The continuous quadratic cost function begins with the following standard

quadratic form,

1 coll T — T i f?: B T
-t ‘ < T g + ‘ : 25
J 2 “I;E Xl a Rg Xp 2 0 Q1 ¢ B-Ewl =c Q] Rc 0 e dt] (25)

O RJLu

At this state in development, the above cost function is different from previous
attempts to design dvnamic compensators using output feedback because both z

and u  are weighted.
N



If u. is not weighted in the cost function, the continuous~time optimization
problem can become singular. The Rc matrix can be zero in the discrete-time
optimization problem without causing the singularity problem, but the compen-
sator gains can still become very large.

A solution to the output feedback optimization problem using Eq. 25 is
somewhat ambiguous since the compensator states have no intui;ive interpretation.
Optimal designs using the Kalman filter, Ref. 19, or observer, Ref. 7, use
compensators with states that have clearly defined roles as observers of plant
states. A discussion of the problem of when is a compensator an observer and
what does it observe is discussed in Appendix A. The global optimum for the
optimization problem with compensatcor states having arbitrarily specified order
less than n-% remains unsolved.

A heuristic approach is taken for the active flutter suppression control
design. The approach successfully accommodates algorithm convergence difficult-
ies, provides compensator states with an intuitive interpretation and contri-
bures toward improving control law robustness. A new term, represented in Eq.

5, 1is added to the cost function as follows,

1 oo (*T _ _ o T T - .-— —
== : - ) -
J 5 E[f -}‘{wlxa Xg X. 2 d] (L_1+HCQHC), HQ 0 X 1
o |L <
. ig
Xf
. . 2
~QH Q.+ 0 |Lu |
| 0 0 R

+[uT v:l R o {]u. dt] (26)
—c c —c

16



() and HC are chosen to be full rank. The new term has the following proper-
ties:

e As Q is increased, the compensator states are interpreted as more
closely following (observing)(Hcgwl. HC can be arbitrarily chosen
subject to the rank condition.

e If Q is nonzero, the algorithm to be discussed in Section III-D con-
verges to a control law where the compensator and plant are coupled,
even if the starting stabilizing gain‘is uncoupled.h When Q is zero,
an uncoupled starting stabilizing gain (Kv’ Ku, and Rc are zero
matrices in Eq. 31) causes the algorithm to converge to an uncoupled
gain which satisfies the necessary conditions.

¢ The solution with and without O is non-unique when compensator states
are included in the plant model. Different starting gains converge
to different local minimums. The different compensator designs at
local minimums are not necessarilv related by a transformation matrix
(Ref. 7).

¢ A simple root locus using the wing model at 8.0 kPa ( the design flizht
condition) demonstrated that the wing model at 8.0 kPa cannot be
stabilized using only the accelerometer measurement. The plant and
compensator must be coupled to minimize the cost function for the
active flutter suppression problem.

.® The new term in the cost function is similiar to techniques used in
explicit model following approaches, Rer. 24 and 25. The difference
is that the compensator dvnamics (i.e. the model dynamics in explicit
model following parlance) are allowed to bHe changed by the optimiza-
tion process.

“he continuous problem is transformed to a discrete problem using the sampled-

data regulator as discussed in the next section.



B. DISCRETE OPTIMIZATION PROBLEM

The controls U, v and u are assumed to be constant over
sampling interval, At. The piecewise constant controls allow

model shown in Eq. 23, and the cost function shown in Eq. 26,

formed to an equivalent sampled-data regulator problem, (Ref. 26),

X ¢ r u
,dk.n\ e B

X o) 0 N b n -0y

P p Pl]™™ a
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N 2N k=0t= Y = i {
J=1lim J

N

The state x
P

-T - T -

[Ewl X, Xg Xf] The upper right partition of ' in Eq. 27
be zero.
tation for u(t) would be a triangular data hold.

stant over the sampling instant if [ is modified as shown.

v
k,
as a design parameter,

The class of contrel laws considered

The control,

are restricted to be of the

the fixed
the design

to be trans-

(28)

(29)

(30)

in Eq. 27, as shown in Eq. 23, is equal to the state vector

is assumed to

1f this assumption is not used, the implied continuous-time implemen-
u(t), is con-
A white noise term,

with covariance, V, is added to the discrete measurements and is treated

torm



s s IO,
K K K
| _ v 0] u Tf (31)
v K K K z
k f c v -
u g
Defining the variables
=7 + 3
@C _11 ‘2K® (32)
® =1+ AtK (33)
u v
FC = BZKy (34)
FU - BZKu (35)
= AtK
Kf _Ath (36)
K, = LK (37)
The implementable form for the control law with the compensator is
Zen T % T T (38)
Uepp T O Y T Rp v TR 2 (39)

C. NECESSARY CONDITIONS FOR OPTIMALITY

One final problem must be resolved before the necessary conditions for
optimality for the output feedback probelm can be determined. The cost in
Eq. 29 minimizes the average long term stochastic performance of the plant.
State and control initial condition errors are éveraged to zero as N increases
and do not affecF the control desizsn. In contrast to stochastic output feed-
back, the LQG problem and the deterministic optimal output feedback approach
in Ref. 4, are primarilv concerned with driving initial conditions errors to
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zero; another desirable control objective. A final modification to the
quadratic cost function is constructed where minimum stochastic performance
and fast response (and as is shown later, robustness) can be traded off against

each other,

.k kzl k-i-1 . -
= 2 + i - =
BT % % T iko b Gy KX = 2 + X (40 a)
TE e = - -— - .+_ - —
Y= Ky = - KOxy - KO 2, +1) =uy +ug (40 )
JEK) =2 @+ T (41)
2 t s
b T =« T ¢ T =2
= + Mu .+
To T ko e @ Bpe T2 E MU U Ry (42)
Jomtim <2 E] 3 Wl 0k +oxl Ma. +uT Ru (43)
s oo ML k=0 =sk * —sk —sk —sk -—sk = —sk
The plant response is separated into the transient component, X and the

=tk’

stochastic component, X o as shown in Eq. 40 a. The feedback control law

is similarly partitioned into the transient, and the stochastic, u

Stk =sk’
components. Jt is the transient cost with noise sources set to zero while
JS is the average stochastic cost. The objective is to determine the output
feedback gain K in Eq. 40 b which minimizes the average cost shown in Eq. 41,
The necessary conditions for minimizing J(K) are straightforward if the
quadratic weights in Jt and JS are equal. The tradeoff between Jt and JS

is accomplished by changing XO, the covariance of the plant state initial
condition.

For the plant dynamics shown in Eq. 23, the feedback gain constraint shown

in Eq. 31, and the following conditions.

- T T o 7/,
= iy N - =W . b b
E [E#] 0.0 E[}§4;lj w] ékJ (44 a, b)
El~ | = 0.0 El- *.T] = Vi, (45 a, b)
-~k —* —j K
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E [ﬂk 1,] - E [Ek _)_gg] - E[y_k g(r)] = 0.0 (46)

T
E [350 _)5()] Xo &7)

L

it

Tae cost in Eq. 41 can be rewritten as follows, (Ref. 8),

JEK) =% tr {p(w + xo)} + 4 tr {KT(FT P T+ ﬁ)Kv} (48)

The matrix, P, satisfies the Riccati~like equation,

T T

P = 6. P& + CIKRKC + O - MKC - CK'# (49)

CL” CL

®CL is the stable closed-loop plant matrix,

®CL = ¢ - TKC (50)

The matrices ¢, [ and C are defined in Eq. 27.

The necessary conditions for J(K) to have a minimum are derived in Ref.
8. There must exist a gain, K, so that QCL is stable. The gain, K, must
satisfy Eq. 49 and the folleowing

: T - T.T
=2 8¢+ (W+ X)) + TKVK!
S ‘CLS‘CL ( \G) JKVK L (51)
A~ T . ~
[TTPT + R] K [CSCT + V] = [A PC + MT] SCT (52)

A few comments are
e If W and V are zero matrices, the necessarv conditions are the
solution to the deterministic output feedback problem, Jt’ with JS
zZero.
e If XO is a zero matrix, the necessarv conditions are the sclution
to the stochastic outnut feedback problem, Jg, with Jt zerco, and S

. . Do T
is the covariance matrix tor E [ik x |-



e The covariance, XO, performs the same function as adding pseudonoise
to the plant to improve closed-loop performance.

An algorithm to compute the optimal K which satisfies Eqs. 49, 51 and 52 is

given in Ref. 8. An optimal gain exists provided an initial stabilizing gain

exists, I and C have full rank, m<n, 2<n and

W >0 (53)

A

Q>0 (54)

The above conditions guarantee convergence. The algorithm may still converge
if the conditions are not satisfied as in the case in this report.

D. A PRACTICAL CONVERGENT ALGORITHM FOR DISCRETE OPTIMAL OUTPUT FEEDBACK

Step 1: Choose KO so that oL = ;- .ROC is stable, @OE(O,I],

z > 1, j an integer 2 1 and set i = 0.
Step 2: Solve Eq. 51 for S using X. The Bartels-Stewart algorithm
in Ref. 27 is recommended.

Step 3: Solve Eq. 49 for P using Ki.

P=TP"+R (55)
I T
S = CSC + V (56)

using Choleskv decompositicn. If the symmetric matrices P and
S are not positive definite, go to Step 8.

Step 5: Con?uteKNEw,d(Ki)

. TS T} . .7o-1 .
RNEW = P [l S+ M } S¢S (57)

AR = Kpy ~ 8y (58)
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Step 6: Compute Ki+l

_ (59)
Kiyp = Kp + aydy)

Step 7: Evaluate the cost function, Ji,using Eq. 48. If i = 0, set 1 to 1,

o, =, and go to Step 2. If J, is negative, go to Step 8.
i+l i : i
If J, - J, 1 is negative, go to Step 9, otherwise, go to Step 8.
i i-
Step 8: Decrease a; using z: 4, = ui/z

Go back to a previous stabilizing gain

Ki = Ki—j’ d(Ki) = d(Ki-j) (60 a,b)
Compute

Ki+l = Ki + uid(mi) (61)

Set G T oy 1 i+l and zo to Step 2.

5J
Step 9: Compute aK(Ki)

3J A T.- ~T T

~=(K.) = PK - | 'p: A

dK(hi' PkiS [ -+ M ] SC (62)
43 "

If = (K,) || and (I, = J, [)/J, are less than some convergence
1 G A i i-1 i

criterion stop, otherwise set o, = %,, 1= 1i+l, and go to

i+1 i
Step 2.

Reference 8 derived the property that there exists an 0 < & £ 1 such that the
algorithm is stable. The algorithm uses a number of checks to determine if
the current value of X is too larze and reduces o accordingly. Numerical
experience indicates that the algsorithm converges fastor for values of &

closer to 1.0.



IV. DIGITAL CONTROL DESIGN

This chapter presents the design values for the baseline control system.
The digital control design is determined by choosing elements in Q, R, W, XO
and V, finding an initial stabilizing gain and computing the locally optimum,
K, using the design wing model. The control design is evaluated using the
evaluation wing model to obtain rms response for states and controls. Nyquist
plots are determined using a lower dimension evaluation model. Adjustments
are made to design elements until a desired performance tradeoff is obtained.

A. PROCEDURE FOR COMPUTING AN INTTIAL STABILIZING GAIN

The dynamic compensator makes it difficult to apply output feedback
stabilization procedures to the flutter control problem. A straightforward
approach is presented that successfullv determines an initial stable gain for.
the flutter problem.

Taking advantage of the block diagonal form of the flutter model, the
unstable flutter mode in the model is forced stable by adjusting the 2x2 block
parameters. KV in Eq. 31 is easilv chosen to stabilize @u and B in Eq. 13 is
set to 10. With all gains but Kv zero, $CL is stable and a new preliminary
gain can be determined with the algorithm and the modified wing model.

The process is repeated using the new preliminary stabilizing gain and
perturbing the flutter mode in the direction of the true value. If the con-
trol design is relatively insensistive to the artifically induced plant para-
meter variations, a valid stabilizing gain can be iteratively computed in a
few steps. Three iterations were used for the wing model.

An alternative approach is to start the design at a low dynamic pressure
flight condition where the tlutter mode is stable. TIncreasing q iteratively
and using the previous gain from the aleorithm for each increase in q also

results in a stabilizing gain at the desired flight condition.



B. DESIGN VARIABLES AND OBJECTIVES

The optimal output feedback design problem for flutter suppression has a
number of design variables which must be chosen by the designer. The wing
model is similar to (but not the same as) the wing model in Refs. 1 and 10.
The control performances in Refs. 1 and 10 form reasonable objectives for
specifying the control design variables and are shown in Table 2. The dif-
ferences between the approaches are

o Digital design in this report verses analog designs in Refs. 1

and 10.
® 4 compensator + 1 prefilter + 1 control state in this report
versus 4 compensator + 1 prefilter state in Ref. 1 versus 4
compensator states in Ref. 10.
) This report, Ref. 1 and Ref. 10 each use different plant model
orders for the design wing models.
The Dryden wind model shown in Eq. 9 disturbs the dynamics for both references.

The parameter design variables are the prefilter time constant, the
sampling time At, the accelercmeter measurement noise covariance, the cost
function weights, Ql, QC, Q, R, RC, RV and the state initial condition matrix,
XO. Structural design variables are the order of the compensator, the compen-—

sator observation matrix, HC, and the timing of the Ve observation.

C. DESIGXN VALUES

Using Refs. 1 and 10 as guidelines, the order of the compensator, O, is
chosen to be four. The matrix, Hc’ is chosen so that the first two compensator
states "observe' the unstable flutter mode in Table 1 and the third and fourth
compensator states "observe'" the second mode in Table 1. The (4 x 10) matrix,
Hc’ is chosen with the plant states expressed in reduced-order model coordinates

as shown in Eq. lb. FElemeuts in H_ are simply zeroes and ones.
L

[
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As a general rule, if poles and zeroes are 'close'", the pole is usually
“"close" to being uncontrollable or unobservable. Modes 3 and &4, in Table 1,
represent stable modes that are only moderately affected by the control design
as shown in Table 3. Increasing the order of the compensator to account for
modes 3 and 4 is not required.

The sampling rate is chosen to be 200 samples/sec. Plant modes with
natural frequencies above 628.3 rad/sec are aliased by the sampler. The
aliased frequencies for these modes are shown in the second column of Table
3. The mapped poles in Table 3 are determined by first computing ®CL for

the full order closed-loop evaluation model, computing the discrete closed-

loop poles, then mapping the discrete poles back into the s-domain using

the natural log,

Discrete pole o= a + ib (63)
2 2 jtan—lb/a

Discrete pole »=Na + b e (64)
. 2 2 .1 ~1

Mapped Discrete pole %%—ln o= J? In (Qza +b" ) + ] Zztan b/a (65)

Covariance values and quadratic weights chosen for the design are
shown in Table 4. The covariance, Xu’ is the input control position ini-
tial condition covariance. The covariance, Xu’ is the eleventh diagonal
element in the Xo covariance matrix shown in Eq. 47. The covariance Xu
is defined as Xu = E { xi }. Table 5 shows that increasing Xu increases
gain margins and phase margins but also increases control surface activity.
A compromise must be reached between the conflicting objectives of good
stabilitv margins and low control surface activitv. If the control surface
activity is high, moderate gusts can cause the surtface to saturate quicklvy,
the design may become sensitive to unmodeled accelerometer noise disturbances

and the control svstem mav become susceptible to limit cveling. The design



for Xu = 0.10 in Table 5 is selected as the compromise value. The gain
marginsg, phase margins and covariance activity in Table 5 compare favorably
to the analog designs in Table 2.

Table 5 shows that the input noise adjustment procedure is capable of
improving stability margins for the output feedback compensator design
synthesis technique used in this report for the wing model. TImproving stab-
ility margins increases control surface activity. Adjusting\the input noise
affects both the compensator and the output feedback gains. The implication
is that artificial input noise variation may benefically affect stability
marginsifor any design using the output feedback design approach discussed
in Chapter III (with or without compensator states).

The Nyquist diagrams for the three control laws in Table 5 are presented
in Fig. 3 and show the progressive increase in phase and gain margins. A Bode
plot of the reduced-order plant plus the XU = 1.0 control law design is pre-~
sented in Fig. 4. The rapid changes at 415 rad/sec and 163 rad/sec are caused
bv the zeros near these frequencies as shown in Table 1. The bandwidth in
Table 5 is the highest frequencyv in the Bode plot at which the gain is greater
than -63B.

Table 6 shows the variance values for deflection and rotation of the 7
mass bodies which comprise the wing model for a 0.305 m/s (1 ft.) gust input.
The variances increase frqm the fuselage to the wing tip but have acceptable
values.

D. NUMERICAL EXPERIENCE

Numerical experience with the algorithm and the flutter control problem
with dvnamic compensation veritfied that the baseline control design perfor-
mance given in Table 5 is probably a local minimum. Different starting gains

converge to ditfterent desicns with ditferent rms performance. The desiun in

~



Table 5 could probably be improved by starting the algorithm at different
stable gains and comparing performance. Theoretical and numerical procedures
which guarantee uniqueness is an area of investigzation recommended in Chapter
VIT.

Figure 5 shows a typical convergence pattern of the output feedback
algorithm. The largest improvements in the cost function occur within 10
iterations. Values for the algorithm's « parameter, defined in Section
I11-D, vary between 0.2 and 0.05 depending on the weighting and covariance
values.

In the next section, design parameters are varied and the effect on
performance is tabulated. Whenever possible, the starting gain is fixed at

the same value for each variation.



V. EFFECT OF VARYING CONTROL PARAMETERS AND STRUCTURE

In this chapter, the effects of lowering the sample rate, varying the
orefilter time constant and alterihg the control structure from a "one-step
prediction” to an "update'" implementation are investigated. The starting
gain column in the Tables indicates if the starting stabilizing gain is
the same as the starting gain in the baseline design. If ghe gains are not
the same, the starting stabilizing gain is the locally optimum gain obtained
in the previous variation being investigated.

A. SAMPLE RATE VARIATION

Slower sample rates lower the requirements for computer specifications,
computer code efficiency and A/D, D/A converters. The effect of progressively
lowering the sample rate from 200 samples/sec to 100 samples/sec is shown in
Table 7. The complexities of making meaningful comparisons, as well as the
optimization's propensity for advantageous reconfiguration is evident in
the Table. The control rms response improveswith lower sample rates for
fixed Xu’ but gain and phase margins degrade, particularly at the higher
frequency crossover points. The XU covariance is increased to 0.25 for the
160 sample/sec design in an attempt to match Srms response with the 200 sample/
sec design. The degradation in high frequency gain and phase margin at the
lower sample rate is evident. Sample rates below 140 samples/sec appear to
have questionable performance.

B. PREFILTER POLE VARIATIONS

Analog flutter control laws in Ref. 28 used first order analog prefilters
inall the designs reported. Values tor the prefilter pele ranged from -5.0
to =20.0. The control laws in Ref. 2Huse two sensors for teedback. Torsional

wing motion can be made better observable with two sensors.



Lower prefilter poles for the one accelerometer sensor used in this
report degrade rms response for the control surface, but improve gain and
phase margins (except for the high frequency gain margin) as shown in
Table 8. The best compromise appears to be to reduce the magnitude of the
prefilter pole until érms response is marginally acceptable. Although not
studied in this application, a wash-out filter (s/s+b) should be incorporated
with the prefilter to suppress low frequency motion of the Qing caused by
aircraft maneuvers.

C. ALTERNATE CONTROL STRUCTURE

The control law shown in Fig. 2 is purposely designed so that uy

the Xf k-1 measurement for feedback. The control Yyos by definition, is to
b

be written by the onboard computer to the actuator output port at the tine

uses

instant tk' A one sarmpie time period, At, occurs in real time in the onboard

computer between receiving Ye 11 from the measurement input port and writinz
b

oy to the actuator output port. The &t time period can be used to compute

u, using Eqs. 38 and 39.

k
Consider changing Eq. 28 so that Ve k+lis assumed to be the measurement
at t,,
Ve, Kkt
e ek (66)
le

30



Note that the '"measurement noise'" and the process noise become cross-—
correlated. The implementable control law which minimizes the cost function

using Eq. 66 as the measurement vector is

T
2 T % B TN Ve TN Ykt (68)

k u k-1 £ Yf,k c Zk-1 (69)

A block diagram is shown in Fiz. 6. All multiplications and additions in
Eq. 69 can be performed before tk’ except the single multiplication Kf yf,k
and the addition to form Uy - The computation delay is very small. The
compensator in the control law in Eq. 68 resembles the '"update' Kalman
filter form.
The covariance, Xu’ for the alternate control structure is reduced to

0.01 to make the control surface variance similiar to the baseline design
control surface variance as shown in Table 9. The reduction in Xu de~
grades the stability properties of the alternate control structure design as
shown bv the Bode plot in Fig. 7. The performance of the alternate control
structure could probably be siznificantly improved by adjusting the quad-
ratic weights. The gquadratic weizhts are not changed in any of the tests
from those used to optimize the baseline design. The low frequency gain in
Fig. 7 is unacceptably high, but could be improved using the (s/s+b) wash-

out filter.
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VI. EFFECT OF VARYING FLIGHT CONDITION

The active flutter suppression control system should stabilize the wing
over a large range of flight conditions. Two approaches are investigated
“or flutter suppression from q = 5.0kPa to 9.5kPa at constant Mach number.
The first approach uses the constant gain baseline design at a = 8.0kPas
and investigates closed-loop performance with changiﬁg flight condition.
In the second approach, optimal output feedback designs are obtained at four
flight conditions. A new gain scheduling procedure is used to schedule control
gains as a function of a by minimizing the weighted difference of optimal
and gain scheduled closed-loop eigenvalues.

A. CONSTANT GAIN DESIGN

The baseline constant gain design at q = 8.0kPas, for the design vaiues shown

in Table 4, has the following values for the block diagram shown in Fig.

2
“y

0.746 0.0994
_ |-0.112 0.918
c 0.139 -0.274
0.00942 0.0964
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The open-loop wing model eigenvalues for the first seven modes is shown
in Fig. 8. The wing model is stable for a = 5kPa. The closed-loop wing
model eigenvalue root locuses for the constant gain design are shown in
Fig. 9, along with the root locus of one of the closed-loop compensator
péles. The constant gain design stabilizes the wing up to 5 = 9,5kPa
where the closed-loop compensator pole shown goes unstable. Rms response
for the control surface, and gain and phase margins are shown in Table 10,
The rms response remains at a high level as a decreases but the gain and

phase margins improve (except for the high frequency phase margin at a =

5.0kPas).

B. A NEW GAIN SCHEDULING PROCEDURE

A practical method for adapting a control law to changing flight
conditicons is gain scheduling. Control designs are obtained at a number of
flight conditions which span the operating range of the plant. The gains
in the control law are scheduled using regression analysis. Flight condition
parameters that can be measured or estimated in flight are treated as independ-
ent variables in the regression.

The previous section demonstrated that a constant gain design stabilized

the wing over a wide range of dynamic pressure variations. A gain scheduling

function of the form
K =5<;1+G2 (76)

should be able to improve both performance and the stability region. A

standard regression analysis cost function for computing Gl and G, is
Ny { T i
1= % - . - K.))Q. (K - K (77
JyT ke u\gs I\i)gi(}\gs K } (77

The gains, Ki’ are the optimal cutput feedback gains obtained at N _tlight
. f

conditions, Qi is a pesitive definite svmmetric weighting matrix, and tr

(o



signifies the trace of a matrix.
The gains G1 and G2 were computed using Eq. 77 and Qi the identity
matrix. The closed-loop plant using Kgs was unstable within the region of
the gain schedule. Adjusting the diagonal elements of Qi to stabilize the
gain-scheduled closed-loop eigenvalues proved to be difficult. An alternative
method is developed for choosing Qi' The new cost function attempts to match
closed~loop eigenvalues and eigenvectors instead. of matching gain variations.
Consider two feedback gains, K and Kgs which have the same dimension but

are not equal. The closed-loop eigenvalues, Kj, and eigenvectors, Ej’ for K

satisfy

®+TKC) x, = A, X, j=1... 78)
( ) X, 5 % h| n (78)

Following concepts in Ref. 29, assume that K and Kgs are related by

KC l] = KOS C —J (79)

for the eigenvector ij' Substituting Eq. 79 into Eq. 78, it follows that K

and K s have the same closed-loop eigenvalue and eigenvector for the plant
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The cost function in Eq. 77 is altered using the closed-loop eigenvectors

for the known gains, Ki’
Q

N- ﬂ—\-;i_—-—\
Io= .3t er {(K KD, X, W, X CH K - KT (80)
3 i=l gs i i"i 1711 gs i

The matrix, Xi’ in Eq. 80 is the closed-loop eigenvectors for Ki arranged
columnwise. wi is a diagonal weighting matrix with nonzero positive elements
along the diagonal. The notation * means take the transpose of the complex
conjugate of the matrix. The matrix Qi is real if diagonal weights in wi

weight aneirenvector and its complex conjusate equallv. The cost function
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minimizes the error between Kgs C Ej and Ki C ij instead of between K s and

Ki' Minimizing the cost function yields

- 9 - .
N _2 Ne if 3.K.Q
N N - N (81)
f - 5 zt K.0
igl 9,4 121 Q i=1 "ivi
L. s b d

Inverting the square matrix in Eq. 81 determines the least square solution
for Gl and G2. If a gain scheduled closed-loop eigenvalue is unsatisfactory,
the diagonal weight in Wi can be increased in an attempt to force the eigen-
value to its design value. This gain scheduling procedure is particularly
applicable to the flutter problem since the primary concern is the stability
of one unstable mode.

C. GAIY SCHEDULE DESIGN

The performances for optimal output feedback designs at q = 8.0, 7.0,
6.0 and 5.0 kPa are shown in Table 11. The second row in Table 11 shows
that rms response can be reduced at lower q while maintaining phase and gain
margins comparable to § = 8.0 kPa. The baseline design and the last three
designs in Table 11 are used to compute Gl and G2 in Eq. 81.

The scheduled gain performance and closed-loop eigenvalue root-locus are
shown in Table 12 and Fig. 10, respectively. Phase and gain margins are high
in Table 12 but the resulting rms response is alsc high. The scheduled gain
closed-loop plant goes unstable immediately outside the region of flight con-
ditions used in the gain schedule. The instabilitv is caused by one of the
closed-loop compensator poles. New gain scheduling procedures is an area

recomrmended for continued theoretical investigations.
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VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The conclusions of this study are

An efficient stable algorithm for solving the stochastic infinite~-
time discrete optimal output feedback problem can be applied to active
flutter suppression control design.

Practical discrete low-order dynamic compensators can be designed
using optimal output feedback.

A digital control law which accommodates computation delay can
stabilize the wing with reasonable rms performance and adequate,
adjustable, gain and phase margins.

The sampling rate for the control law should be at least 140 samples/
sec.

Lowering the analog prefilter pole increases rms response but also
improves one of the gain margins and both phase margins.

A new gain scheduling procedure is developed to yield a stable linear
zain schedule as a function of dynamic pressure over the design flight
conditions. Despite these developments, further improvements and
modifications in gain scheduling are needed since the gain schedule
did not perform as well as a constant gain design inside and outside
the design flight conditions.

Designing the flutter control svstem using a reduced order model, and

verifyving performance of the control design with a higher order more

exact model, reduced computer cost without significantly compromising

control performance.



B. RECOMMENDATIONS

Further develop the baseline control designs for both structures in ,
Figs. 6 and 2. The goal is to lower control rms response to 4.5
deg and improve the -low frequency phase margin. Avenues for further
development for the baseline design are
A Vary the quadratic weights.
A Increase the prefilter pole to -60.0.
A Lower the sample rate to 150 samples/sec.
A Start the algorithm at many different starting gains to
determine a lower wvalue feor the cos; function.
A Vary the initial condition covariances.
A Try using a dynamic compensator of order two as in Ref. 11.
A Introduce a second accelerometer measurement as in Refs. 1
and 28.
A Yove the compensator pole that goes unstable in Fig. 9
further into the left half complex plane.
Test the active flutter suppression digital control in a wind tunnel.
Investigate theoretical and numerical developments which may cause
the optimal dynamic compensator to be unique (up to a similarity
transformation). One avenue 1is to restrict compensator gains so that
the compensator is an observer as discussed in Appendix A. References
9 to 11 did not treat all the control law gains as free parameters.
Further improve the gain schedule procedure in Section VII-B. Modify
the approach so that a select number of gains are scheduled using
Eq. 76 and others are chosen to remain constant. Introduce eigenvalue

sensitivity inte the cost tunction.
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e A potentially better approach to gain scheduling is to bring the
selection of G1 and G2 in Eq. 76 directly into the control design
optimization process. ICS has recently developed a multi-model

approach to stochastic optimal output feedback which could perform

the optimization.



APPENDIX A

COMPENSATORS AND OBSERVER THEORY

The globally optimal output feedback constrained d?namic compensator
solution is currently unresolved if the order of the compensator is pre-
specified to be less than n-2. If the order is increased to n-%, where 7
is the number of observatiouns, then Ref. 7 shows the globally optimum
dynamic compensator is an observer which estimates the n-{ state functional
not measured with the 2 measurements. If the order is increased to n,
the optimal solution uses a Kalman filter for the compensator. These
results suggest the optimal compensator which minimizes stochastic per~-
formance may be some type of observer of a linear function of plant states
not measured. The cross weighting used in Eq. 26 1is a straightforward at-
tempt to cause this behavior to occur. This appendix addresses three quest~
ions about compensators that résulted from the cross-weighting approach:

e When is a compensator an observer of a linear function of plant

states?

o If the compensator is an observer, what does it observe?

e When are two internal compensator representations related by a

state transformation and what is the transformation matrix?

These questions are resolved using the theoryv of feedforward control

developed in Ref. 30. Given a plant

Zr T Pt Teue i (82)
Yor = Rz T Reue (83)

and a model

I — + -
g Tt o (84)

= + . = i
B TG TP Yope T O (85a,b)



. % " . X £
the plant traJectory,_gk. and control, Ec,k which causes Zc,k to follow
¥y is
-~ % o -
z 51t S12 Ss...L. Xy (86)
;’{ 1
u¥ Sp1 Sp2 So3., Yy

The feedforward matrices in Eq. 86, if they exist, satisfy the algebraic

equation
% Lo S11 S12 Si3 Sn® St Sy (87)
Ke K¢ Sp1 0 Sap Sag i D 0

1f S12 is a zero matrix, then Slj and SZj’ ji} are also all zero matrices.

~

The normal use of Eq. 86 is that the plant and model are givén and it is
desired to find z* and gé.

An observer is a form of model following. In an observer, it is desired
to choose @c stable, FC; KC, Kf and TU so that y.= vy without using future

P

values of u and using only Yobs in gé . With these restrictions, Eq. 87

changes to
= (88)

If the equations in Eq. 88 are individually expanded, the standard observer

conditions are obtained.
8.+ T C=38 .
"bll - C bll’ (89)

D= TSy, = s (90)
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Kcs + K.C = H 91)
K.S.. =D -(92)

If~3§ is applied to Eq. 82, the plant equations become

Zyt1 T ®c%k * TE Yobs, k * Ih 2 (93)

Yoou T K2 ¥ Kedope, e * Dy (94)
b b ]
and zcobserves y.

Comparing Eq. 93 with Eq. 38, the answer to the first question is that
the compensator is an observer if the compensator matrices satisfy Egs. 89

to 92. The answer to the second question is that the compensator/observer

state, z,, observes Sll§k'
Equations 89 to 92 imply that if the compensator is to be an observer,
then the gains in Eq. 93 cannot all be treated as free parameters. For example,

if K® and Ky in Eq. 38 are specified, then S11 in Eq. 89 can be computed.and
Ku is forced to become
K = s T (95)
u At 11
Equality constraints, such as Eq. 95, could be used to change the cost
function in Eq. 48.
The answer tothe third question can be determined if one compensator is
treated as the plant and the other compensator is treated as a model so that
the feedforward matrix equation can be solved. If equality holds in Eq. 87,
812 and 821 are zero matrices and 322 is an identity matrix, then the compensators

are alternate internal representations of the same input-output relationship.

The compensator states are then related by the linear transformation Sll'
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LIST OF SYMBOLS

In general, matrices are represented by capital letters and vectors

are underscored.

VARIABLE EQUATION DESCRIPTION
A 23 Reduced-order design wing model system matrix
Aa 23 Fast actuator model pole
Ag 23 Reduced-order disturbance pole
Zii 19 Part?tioned, transformed wing model system
matrix
- 6 .52 x 52 wing model system matrix
a 12 Prefilter pole
a; 18 Real part of an eigenvalue
B 23 Reduced-order design wing model control matrix
Ba 23 Control matrix for fast actuator model
B 23 Control matrix for reduced-order disturbance
& model
Bu 6 52 x 1 wing model control matrix
Eui 19 Partitioned, transformed wing model control matrix
v 6 32 x 1 wing model disturbance noise matrix
_wi 19 Partitioned, transformed wing model disturbance

noise matrix

b1 18 Imaginary part of an eigenvalue
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VARIABLE

KNEW

t

EQUATION

2, 28

24

20

22

58
23

22

30, 42
43, 77

17b

36, 37

31, 36

76

31

DESCRIPTION

Observation matrix
Reduced—-order plant state observation matrix

l x 52 wing model state observation matrix

Partitioned, transformed wing model state
observation matrix

- -1 _
Dw - CwZ A22 BuZ
Wing model control observation matrix

Difference between gains

Disturbance observation matrix
- -1 _ ‘
By~ Cu2 892 B

External disturbance observation matrix

Positive definite svmmetric matrix
Positive definite svmmetric matrix
Gain schedule gain

Cross-weighting observation matrix
Vertical deflection»at node i

Identity matrix

Cost Function

'

Gain matrix

Gain matrix from compensator state to plant
control rate

Gain from prefilter observation to plant contrel
rate

Gain scheduled gain wmatrix

Projected direction of optimal gain in algorithm

Gain matrix from plant control to compensator
controel



VARIABLE

@]

\F

EQUATION

31

31

31

29

29

77

~4
~I

o
wn

25

1B
i

o
(il

86

DESCRIPTION

Gain from plant control to plant control rate

Gain matrixz from prefilter observation to compen-
sator control

Gain matrix from compensator state to compensator
control

Index integer
Scale of turbulence
Number of measurements

Discrete cost function state, control cross-
weighting matrix

Number of time steps in cost function
Number of cdesign flight conditions
Number oI states

Solution matrix to cost equation
Intermediate algorithm computation

Cross-weiznting matrix between plant and
compensater

Discrete cost function state weighting matrix
Weighting matrix for compensator states
Weighting matrix for gain schedule

Weighting natrix for wing model states

Dynamic pressure

Weighting matrix for wing model control
Discrete cost function control weighting matrix
Weighting matrix for compensator controls
Weighting —atrix for wing model control rate
Laplace transform variable

Feedforward matrix

I~
~4



VARIABLE EQUATION DESCRIPTION

S 51 Solution matrix to covariance like
equation

§ 56 Intermediate algorithm computation

T l7a Block diagonalizing transformation matrix

t - Time

u 1 Control State

u, 3 Compensator control state

Vv 45b Measurement noise covariance

Vf 9 Aircraft velocity

v 13 Control rate

W 44b Plant process noise covariance

wl 80 Diagonal weighting matrix in gain schedule

W 27 Discrete plant process noise

SO 47 Initial condition covariance .

Xu - Control actuator state initial condition

covariance matrix

X 27 State vector

X, 8 Actuator state

Xy 8 Disturbance state vector

X, 8 Dryden wind model state vector

§0 23 Reduced and balanced disturbance/gust state
< vector

94 80 Complex eigenvector

Ep 23 Plant state vector for reduced model

§qa 8 Unsteady 1ift and moment state vector

X 6 52 x 1 wing model state vector

X7 gvﬁ 19, 20 Partitioned, transformed wing model state
i - vectors



VARTABLE

VARIABLE
(GREEK)

a

Wy

EQUATION
85b, 2
4

12

EQUATION
59

13

27
82
27
35

27

53

DESCRIPTION
Measurement vector
Compensator state measurement vector
Prefilter state measurement

Compensator state vector

DESCRIPTION
Algorithm stability parameter

Continuous model compensator stability
parameter

Discrete model compensator stability
parameter

Plant discrete control matrix
Compensator control matrix

Wing model discrete control matrix
Control discrete control matrix

Wing model discrete disturbance matrix
Measurement noise

Accelerometer Measurement Noise
Actuator position

Actuator housing white noise disturbance
state

Complex eigenvalue

Gust state vector

Summation

Number of compensator states
Variance of gust

small number greater than zero
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VARIABLE

(GREEK) EQUATION DESCRIPTION

] 27 Plant state transition matrix

@C 82 Compensator state transition matrix
@CL 50 Closed-loop plant matrix

@p 27 Wing model state transition matrix
@u 33 Control state transition matrix

At -

Control and measurement sample interval

SPECIAI. OPERATORS DESCRIPTION
D) Derivative of quantity with respect to time
() Vector quantity
a( )/3( ) Partial derivative of one variable with respect

to another
()% Complex conjugate transpose
()* Star trajectory

Infinity

f Integral

E[ ] Expected Value

T
() Transpose

1
() Inverse
ACRONYM CORRESSPONDING PHRASE

LQG Linear quadratic Gaussian
LOR Linear quadratic regulator
tr Trace of a square matrix



MODES
RESIDUALIZED
AND NOT USED
IN REDUCED
MODEL DESIGN

TABLE 1 POLES AND ZEROES OF THE WING MODEL

OPEN-LOOP EVALUATION

i

EVALUATION MODEL

MODEL POLES ZEROES
. 4
10.8 +  j59.8 13.9
~40.0 = 778.5 -50.0°
MODES USED -5.8* j162.3 -4.2 = j163.0 *
FOR BODE -40.0 £ j225.5 -39.4 = j226.9 *
PLOT -125.0 + §352.3 | -228.0 + 71019.0
-26.4 + §377.3 -21.9 + 3j370.0
-16.5 * j418.2 -5.1 * 3415.2
-37.4 + 3557.0 -19.0 £ 3545.0
-36.6 * §663.0 ~36.3 + 3659.0 *
-34.6 = j776.0 ~4.4 + 3770.0
MODES THAT  -39.7 = }820.0 | -54.7 + 3812.0
FOLD FOR -59.0 = 3908.0 | -59.0 £ 3906.0 *
At = 0.005 -16.0 = j1278.0 ' -89.7 * j1338.0
~17.7 = §1862.0 | -32.6 * j1891.0
-20.8 + 32638.0 |  -21.2 * 32639.0 *
-28.4 % §5617.0 | 0.0+  3j0.0
!
I S :
-228.0 | -228.0 x
-232.0 L -232.0 *
~254.0 L -254.0 *
-266.0 =265.0 *
-284.0 . -284.0 *
-294.0 . -294.0 *
~320.0 ' -321.0 %
-332.0 L -332.0 %
-364.0 I -369.0 =
-379.0 | -381.0 *
-421.0 | -482.0
-426.5 | -425.0 *
-501.7 + 2.3 . -497.0
-706.0 . =714.0 * 3§34.9

* The pole and zerc almost cancel for the actuator
to accelerometer output wing model transfer
function.
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TABLE 3 OPEN AND MAPPED CLOSED-LOOP POLE LOCATIONS

OFPEN-LOOP EVALUATION

MODEL POLES

MAPPED CLOSED-LOOP EVAL-

CATION WING MODEL POLES

MAPPED CLOSED~-
LOOP REDUCED-ORDER
WING MODEL POLES

MODE;‘ESED 10.8 + §59.8 ~14.8 +  359.7 -15.5 £ 3§59.7
IN REDUCED  ~40.0 *  3j78.5 -76.8 * 3139.0 -79.2 £ jl43.0
MODEL DESIGN =5.8 + 3j162.3 -6.8 *+ 3161.0 -6.9 + j161.0
-40.0 + 3225.5 ~41.0 % 3225.0 -41.0 £ 3225.0
- -125.0 + 3352.3 -149.0 * j442.0 ~136.0 + j435.0
MODES USED  -26.4 * 3337.3 -26.0 * 3375.0
FOR BODE -16.5 + 3j418.2 -15.4 *+ j416.0
PLOT -37.4 + j557.0 -38.8 * 3558.0
%
MODES THAT @ -36.6 £ 13663.0 236.4 * 3593.0
FOLD FOR ~34.6 + 3§776.0 -34.6 * j480.0
At = 0.005  -39.7 * 3820.0 -39.7 + 3436.0
-59.0 * 3908.0 -39.0 + 3348.0
~16.0 * j1278.0 -15.7 *+ 21.8
-17.7 + j186270 -17.7 * 3j606.0
-20.8 * j2638.0 ~20.8 + 3125.0
-28.4 * §5617.0 ~28.4 + 3591.0
3
-228.0 ~228.0
~232.0 -232.0
~254.0 ~254.0
-266.0 ~266.0
-284.0 —284.0
-294.0 -294.0
-320.0 ~321.0
-332.0 ~332.0
~364.0 ~348.0
-379.0 ~381.0
-421.0 -538.0
-426.5 -425.0
-501.7 + 2.3 -497.0, ~485.0
-706.0 -725.0
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TABLE 4 NONZERO DIAGONAL ELEMENT DESIGN PARAMETERS

WEIGHT COVARIANCE
Wing Mode 1 - Q (2-24)2
Wing Mode 1 - Xo (3.16)2
4 Compensator 9
States - QC (0.316)°1
4 Compensator ! 2
States - XO § (10.09)1
Actuator Control 5
Position - R (1.0)
Compensator ; 9
Control Position - RC % (1.0)°1
|
Actuator Control ! 9
Rate - R (1.23)
v |
Actuator Control |
Position - X ; TABLES 5,7,
Y 8,9,10,11,12
Accelerometer | 2
Measurement Noise - Va 3 (0.1)
Cross Coupling ; 9
Weight -Q (31.6)
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TABLE 6 VARIANCE OF NODE DEFLECTIONS WITH 0.3048 m/s

WIND GUST FOR THE NOMINAL CONTROL DESIGN

NODE POSITION (CENTIMETERS)

0.013 0.10 0.25 0.47 0.74 1.1 1.4

NODE ROTATION (DEG)

0.02 0.08 0.13 0.19 0.27 0.38 0.48
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SECTION A-A'

9 ACCELEROMETER LOCATION

44.32°

1.943m

‘______.0.876m~—_—_——4

FIGURE 1 WING GEOMETRY,

SENSOR AND CONTROL

SURFACE LOCATION
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